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Abstract
Mathematical models of blood flow are inevitably embedded in models of human ther-
moregulation because they take the role of the most significant heat distributor in models
of the human thermal system [14, 6]. Models of human thermoregulation have a wide
range of applications, e.g. for the prediction of the impact of accidents, diseases and clin-
ical treatments (see [14] and the references therein). The application of our interest is the
prediction of the influence of cooling on the heat distribution in premature infants, see
Section 2. In Section 3 we discuss the requirements of a reliable thermoregulation model
while the governing equation is described in paragraph four. The employed blood flow
model is discussed within Section 5. Section 6 deals with numerical results, followed by
concluding remarks in the last paragraph.

1 Motivation
Lack of oxygen of the fetus or newborn is known to be an important cause for injuries of
the developing brain [9]. Experimental studies have shown that the neuronal loss evolves
over several days after such an incident [8]. An important factor influencing the degree
and distribution of neuronal loss is the cerebral temperature, i.e. lowering the cerebral
temperature can prevent much damage [5].

The question arises, if it is possible to lower the cerebral temperature of an infant by
2 - 3 K by the manipulation of the environment inside an incubator while the rest of
the body maintains a pleasant temperature. The objective of this paper is to discuss the
mathematical measurements which can be used to predict an answer to that question
by the use of numerical simulations.

2 Modeling the thermoregulation of premature infants
The term thermoregulation stands for the measurements of the body to hold a pleasant
temperature [4]. Models for thermoregulation consist of two parts: the active and the
passive system [6]. The active system consists of the regulatory mechanisms shivering
(heat production within the muscles attached to the skeleton), vasomotion (control over
the degree of blood flow within the skin) and sweating (control over the degree of effect-
iveness of heat transfer between the infant and the surrounding air). The passive system
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is the combination of the physical human body and the heat transfer in it and at its
surface. The idea behind this distinction is that the active system has a controlling in-
fluence over the passive system. Naturally, only results obtained by the complete model
can be compared with available real life data.

Concerning premature infants, it is known that shivering and sweating are not of
importance for the modelling process [4, 13], while vasomotion should not be of great
concern for our special application [13]. The modeling of the passive system demands the
discretization of the body and the modeling of metabolic heat production and blood flow.
We do not consider phenomena which are related to environmental conditions, namely
the response to air convection, the probability to gain or loose heat due to radiation and
heat loss due to evaporation in dependence on pressure, temperature and humidity of
the surrounding air, assuming that these are controllable by the use of an incubator [13].

In order to give an answer to the defined question by use of numerical simulations,
a model needs to deliver detailed temperature profiles within the head and a detailed
resolution of the heat transfer processes in the body. It should be applicable to different
size neonates whereby aspects like the anatomy and the thermal maturity have to be
considered. With the exception of the blood flow model, these aspects can be defined via
a suitable geometry and the use of real life data for spatially dependent rates of metabolic
heat production within a numerical method [7, 2]. This also incorporates that existing
numerical methods made for the simulation of thermoregulation of adults are of no use
in the given context since studies have shown [3] that a detailed modeling of geometry
and tissue composition is necessary in order to obtain relevant temperature profiles. As
it can be shown experimentally [7, 2] in agreement to theoretical discussions concerning
thermoregulation models of adults [6, 14], the use of a blood flow model greatly affects
the computed numerical solutions.

3 Analysis of the blood flow model

The bio-heat equation derived by Pennes [10] forms the basis of the majority of models
for human thermoregulation in use today [14, 6]. It describes the dissipation of heat in
a homogeneous, infinite tissue volume. For two spatial dimensions, it can be written in
the form

c(x)p(x)&tT(x, t) = div [A(x)VT(x, t)] + f(x, t). (3.1)

Thereby, the temperature T depends on the spatial variable x = (X1, x2 )T as well
as on time t. Furthermore, A(x), c(x) and p(x) denote the heat conductivity, specific
heat capacity and density of the tissue, respectively. The term f(x) can be decomposed
via f(x, t) = QM(X) + QB(X, t) into parts corresponding to metabolic heat production
QM(x) and blood flow QB(X, t).

As already indicated, the term QM(x) can be defined by the use of real life data
[7]. The formulation of the source term due to blood flow is based on variations of the
following procedure [6, 14]. The idea is that the body is supplied from a central pool of
blood by the major arteries. Before the tissue is perfused, the temperature of the arterial
blood mixes with the temperature of venous blood flowing in adjacent veins. After that,
the arterial blood exchanges heat with the tissue in the capillaries and becomes venous



430 M. Breuss, B. Fischer and A. Meister

blood. The venous blood is collected in the major veins and its temperature mixes with
the temperature of arterial blood in the adjacent arteries before it flows back into the
blood pool.

Since equation (3.1) deals with the change of thermal energy per unit volume, the
term QB(x) takes the form

QB(x, t) = CBPBCCX(x)BF(x) [TB (t) - T(x, t)], (3.2)

whereby TB (t) denotes the time-dependent mean value of the temperature of the blood
within the blood pool, we also assume that the specific density of the blood PB and the
specific heat capacity of the blood cB are constant variables.

The described modeling results in a differential equation for the temporal evolution
of the temperature within the blood pool, namely in

mBCBatTB(t) = ID PBCBCCX(x)BF(x) dx[Tv(t) - TB(t)]. (3.3)

Thereby, the total blood mass mB, the time dependent mean value of the temperature
of the venous blood Tv(t), and locally defined tissue-dependent measures for the blood
perfusion BF(x) and the counter-current heat, exchange CCX(x) are introduced.

Equation (3.3) shows that the temporal change of the blood pool temperature is
proportional to the difference to the temperature of the venous blood. The outlined idea
leads to the modeling of the temperature of the venous blood as

Tv (t) = fD CCX(x)BF(x)T(x, t) dx (3.4)
fD CCX(x)BF(x) dx

which is also usable when only steady states are considered [7]. The crucial terms in
the order of importance are the blood perfusion BF(x) and the counter current heat
exchange CCX (x).

There is much debate about the choice of these functions in literature [14, 6]. This
debate arises because the representation of blood circulation is substituted by a rather
simple model formulation. The cure to this disadvantage is generally sought by exploring
more and more detailed models of microstructure, organs, etc., or it is sought by a better
modeling of control mechanisms of the actice system in the case of adults [14, 6].

The main drawback of the described blood flow model is given by the blood pool idea
itself. This is up to now to our knowledge not outlined in any mathematical description
of this model within the literature and can be illustrated as follows. Let a detailed geo-
metry be given with a stationary temperature distribution together with a homogeneous
neutral temperature at the whole boundary as initial state. Let us assume that we start
a numerical computation where a selective cooling at the neck is employed. By heat con-
duction of the tissue, the effect of cooling computed with the help of the discretization
of heat gradient and heat conductivity of the local tissue propagates into the inner part
of the domain. Concerning the blood flow, the averaging step within (3.4) captures the
local cooling effect which results in a slightly cooler average temperature of the venous
blood within the whole domain than in the initial state. Employing this value in (3.3)
results in a slight negative change of the blood pool temperature. Taking account of the



Blood flow model 431

evaluation of the source term (3.2) for the control volumes located in the vicinity of the
neck, we notice that a strong cooling is locally equalized by the combination of a) the
source term due to blood flow which is mostly influenced by the neutral blood temper-
ature in the rest of the body and b) of the source term due to metabolic heat production
which was not influenced at all by the change in the boundary temperature. The result
is that the effect of a local cooling mechanism is instantly distributed over the whole
domain while a weighted mean value of the temperature over the domain equalizes local
cooling mechanisms. The validity of this reasoning is verified by numerical results [7, 2]
and by an exemplary result shown in Section 6.

The non-local nature of the described blood flow model can directly be seen by
applying an implicit time stepping strategy. Due to the integration over the whole com-
putational domain in (3.4), one ends up with a fully occupied matrix after the usual
linearization step which was already recognized in [7] in the context of steady state
calculations.

We now illuminate a further property of the bloodflow model. Therefore, let the
abbreviations a = pBcB, /3 fD KB (x)B(x) dx and -y = PB/mB hold. A straightforward
computation gives

TB(t) = Ty(t) - -/-TB(t). (3.5)

Note that a, /3 and -y are positive constants. Consider a steady state situation as initial
state, i.e. TB = Tv holds. If the body is heated, the temperature within the body
increases and so TV will increase. This has the effect that the bloodpool temperature TB
will increase in the near future, i.e. TB (t) > 0. We now investigate the net effect of the
bloodfiow. Integration of the source over the computational domain D results in

ID (, )d = a [PTB (t) - I D ] x)T3x5) x -- TB t).

When employing TB(t) > 0 we see that the total of all sources in the body is negative,
i.e. while the blood in the bloodpool cools the increasingly warm body in the mean if
the body is exposed to heat, it also takes over heat from it. The bloodpool and the body
are to be seen as two separate systems which are connected via heat fluxes and so one
can consider the bloodpool as a regulator.

4 Numerical method and experiments

The following numerical approximation of the unsteady bio-heat equation (3.1) repres-
ents a convenient extension of the finite volume method developed in [7], which has been
proven to be a robust, accurate and reliable algorithm in the context of steady state
temperature distributions. However, finite volume schemes are categorically based on
the integral form of the governing equation. In order to apply Gauss's integral theorem
it is neccessary to write the equation in divergence form. Therefore, we introduce the
auxiliary variable k(x) = p(x)c(x) and the auxiliary temperature T(x, t) = k(x)T(x, t)
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into the governing equation and consequently the bio-heat equation (3.1) writes
"" A (xt)- A(x)T(xt (x)] n(x)ds+ f•(xt)dx

(4.1)

for all control volumes a C D, see [2]. In order to solve equation (4.1) numerically,
the space part D is decomposed into a finite number of sub-domains. We start from an

FIG. 1. General form of a control volume of the triangulation (left) and its boundary
(right).

arbitrary conforming triangulation Dh of the domain D which is called the primary mesh
and consisting of finitely many triangles TDh and the corresponding nodes are abbreviated
by xi E D. Based on the triangulation a discrete control volume aj is defined as the open
set of R2 including the node x, and bounded by straight lines which are determined by
the connection of the midpoints of the edges of the corresponding triangles TDj (i.e.

xC b DT) and their barycentre (see Figure 1). The union Bh of all boxes is called thle
secondary mesh. A finite volume method represents a discretization of the evolutionary
equation (4.1) for cell averages defined by (M/T) (t)I• = (1/IaI) faT(x,t) dx, where IaI
denotes the volume of the box a. With respect to the secondary mesh Bh we can write
the integral form (4.1) as

d-t(M'T) (t)L• i•-• {fo EA(x)--_VT(xt) - (x)T(x, t) Vk~x) .n(x) dSk)

+ QB(x,t)dx± +j QM(x)dx} • Vai C h (4.2)

Corresponding to a finite element method the evaluation of the boundary integral is per-
formed by using a piecewise constant distribution of the heat coefficient A• and a piecewise
linear distribution of the auxilary temperature T. with respect to the triangles of the
trianglutaion used. Note that the source term remains unchanged and the calculation is
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given by

j QM(x) dx I oriIQM(xi)

and

j QB(Xt) dx 1 IICBPBCCX(xi)BF(xi) [TB(t) - T(x% t)].

The computation of the blood pool temperature is directly performed by an explicit time
discretization of equation (3.3). Thereby, the temperature of the venous blood is given
by equation (3.4).

It is remarkable that the method degenerates to the scheme presented in [7] in the
context of a steady state solution and therefore the excellent properties like the dis-
crete miin-max principle are maintained in such a situation. Due to the space available

s kin

fat

bone

kernel

FIG. 2. Primary mesh and tissue layers in the head region.

we restrict ourself to the consideration of steady state calculations using the described
method. Thereby, we distinguish layers of skin, fat, bone and kernel by different rates
of metabolism, specific heat capacity and blood perfusion associated with the regions
depicted in Figure 2. As boundary conditions we employ a comfortable boundary tem-
perature of 309.15 K at head, back, legs, and belly while we set 299.15 K at the neck,
i.e. we selectively cool the neck. In reality, this corresponds to the situation where the
infant is wearing a water-filled collar with the purpose of cooling the blood flowing into
the brain through the arteries adjacent to the skin.

In Figure 3 (a) we can see the temperature distribution in the two-dimensional dis-
cretized idealization of the body of a premature infant. Thereby, no blood flow and no
metabolic heat production is applied, so that the depicted distribution of heat is only
influenced by the heat conductivity of the employed tissues. The situation where tissue
dependent metabolic heat production is taken into account is shown in Figure 3 (b).
Note that the heat sources visualized within the picture not only have local effects, they
also influence the mean value of the temperature of the blood pool. Within Figure 3 (c),
blood flow is additionally given.
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It is evident that the blood flow has the effect outlined in Section 5. Especially, the
numerical solution incorporates no hint of the fact, that in reality there is a transport
of cool blood to the brain and also a transport of blood by the veins coming from the
brain.

299.15 301.1 303.1 305.1 307.0 309.0 310.3

Temperature in [K]

FiG. 3. Comparison of steady state situations (a) only with heat conduction (b) with
heat conduction and metabolic heat production and (c) with blood flow additionally
taken into account (from top 'to bottom).

5 Concluding remarks

The range of applicability of the described blood flow model is restricted to situations
where it makes sense to employ a mean value of the whole blood, e.g. if the whole body is
exposed for a longer time to the same temperature. For a clinical application where the
effects of local cooling or heating have to be studied, caution is required when dealing
with the results achieved by employing variations of the described model.
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